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Abstract

It is shown by surface lattice dynamtics that a new type of surface vibrational
resonance arises in those frequency regions where there is a strong depletion
in the bulk phonon density of states. The presence of these pseudoband gaps
15 due to the higher Fourier components in the phonon dispersion relations
introduced by the particular coordination of atoms in layers paraliel to the
surface. A quantitative analysis based on surface lattice dynamics of the
recorded electron energy loss spectra of Cu and Ni suggests that the outer-
most surface interlayer force constant is rather close to the bulk value. This
resonan¢ 1s found to exist throughout the ' direction and makes an
avoided crossing with a resonance denived from a band gap at the £-point.
An explanation is given for the disappearance of the divergent van Hove
singularities in the projected bulk density of states upon projection on a
surface layer.

1. Introduction

The vibrational properiies of clean metal surfaces have
recently attracted a lot of attention both from an experimen-
tal and theoretical point of view. These studies have been
made possible by new surface sensitive vibrational spec-
troscopies such as inelastic He scattering and electron energy
loss spectroscopy (EELS). These techniques probe vibrations
with such high frequencies that the surface lattice dynamics
cannot be described fully within the continuum elasticity
theory. In this frequency regime the atoms vibrate with large
relative displacements such that the surface geometric struc-
ture and the surface interatomic forces are expected to play
a decisive role. Recent measurements on Ni(100) by EELS
{1. 2] and Ag(111) by inelastic He scattering [3, 4] demon-
strated that such information can be extracted from surface
vibrational spectra.

The possibility to observe dipole active surface vibrational
modes on clean metal surfaces was recently demonstrated for
the (100) surfaces of Cu and Ni by EELS [5]. In a recent letter
we reported the observation of dipole active resonance modes
on the (110) surfaces of Cu and Ni {6]. These modes were
shown from surface lattice dynamics calculations to be a new
kind of resonance arising from a pseudoband gap in the
density of states for longitudinal phonons propagating
normal to the surface. This gap defines a region where the
bulk phonon density of states is significantly depleted and has
a simple structural explanation in terms of the coordination
of the atoms in the layers normal to the (110) direction of fcc
crystals. A recent analysis of the bee(111) surface has shown
that this type of surface resonance is a general effect which
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* Present address: IBM. T J. Watson Research Center. Yorktown Heights,
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results from higher harmonic terms in the bulk phonon dis-
persion relations introduced by the particular coordination of
atoms in the layers parallel to the surface {7).

In this paper we show in detail how a surface vibrational
resonance arises in situations with pseudoband gaps in the
bulk phonon density of states. The surface is observed to split
off a mode from the region of high density of bulk phonon
states into the pseudoband gap region where the strong
depletion of the density of states causes the mode to become
a resonance. An argument is also given for explaining why the
divergent van Hove singularities which are present in the
projected bulk density of states disappear for a projection on
the surface layers. These divergences disappear because an
incident phonon at those frequencies interfere destructively
with the phonons scattered from the surface. On the {110}
surfaces of fcc Ni and Cu crystals the pseudoband gap is
shown to exist along the I' X direction in the surface Brillouin
zone (SBZ). The corresponding surface vibrational resonance
makes an avoided crossing with a resonance derived from a
gap mode at the X-point in the SBZ.

A detailed quantitative comparison of the measured
spectra with the calculated EEL spectra show that the loss
peak derived from the resonance is reproduced with a value for
the outermost surface interlayer force constant within + 15%
from its bulk value. In contrast, large oscillatory relaxations
of the surface layers were observed by low energy electron
diffraction (LEED) for these surfaces [8). The EEL spectra
also give information about the dipole activity of the surface
layers. The shape of the loss spectrum is well reproduced by
only the two outermost surface layers giving the dominant
contribution to the dipole activity. The dipole strength is
found to be of the same order of magnitude as measured for
the (100) surfaces (5].

The vibrational structures of the surface appear in the
measured spectra through a specific projection of the surface
vibrational density of states. While the relevant projection
probed in inelastic He scattering is essentially given by the
displacements of the outermost surface atoms normal to the
surface [9], the relative rigid displacements of the surface
layers is the relevant projection in inelastic dipole scattering
(S]. Such vibrational density of states have been evaluated
here from surface lattice dynamics for a semi-infinite sub-
strate using simple force constant models.

The force constant models have been extracted from Born
von Karman analysis of inelastic neutron scattering data with
particular emphasis on the high frequency vibrations. The
bulk phonon dispersions of Cu and Ni are well described by
a single nearest neighbouring force constant {10, 11]. The
surface force constants have been chosen to have the same
values as the bulk layers. This choioce should be viewed as
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a reference model with no more justification than that it
describes the large effect of the loss of coordination of atoms
at the surface.

The surface vibrational density of states has been calcu-
lated using a Green's function technique proposed by Lee
and Joannopoulos [12]. This technique is based on the
transfer matrix and its application to surface lattice dynamics
is described in the Appendix.

2. Experimental procedures

The experiments were performed in a multitechnique ultra-
high vacuum system which is evacuated by turbomolecular,
ion, and titanium sublimation pumps with a base pressure of
4 x 107" Torr [13]. The electron spectrometer is based on a
double pass 127° cylindrical electrostatic deflector for the
monochromator and analyzer. The scattering geometry is
fixed with a total scattering angle of 120°. The angular accept-
ance of the analyzer is 1.8° at full-width-half-maximum
(FWHM). The scattering plane containing the incident and
scattered electrons is defined by the surface normal and the
[170] crystallographic direction for the Cu(110) and Ni(110)
surfaces. The spectra were recorded in the specular direction
at a temperature of 300 K. Impact energies of 3.2 and 4.3eV
were used for Cu and Ni respectively.

The samples, which were approximately 1cm diam and
| mm thick disks, were cleaned by neon ion bombardment
{500eV) and annealing to 750 and 1050K for Cu and Ni,
respectively. The samples were spotwelded to 2 manipulator
with a pair of 0.5 mm Ta wires for the Ni samples and with
0.5mm Pt wires for the Cu sample. The clean surfaces dis-
played sharp | x | LEED patterns without any sign of
typical impurity vibrations. such as O, C, or S, in the electron
energy loss spectra.

The vibrational spectra of the clean Cu and Ni(110) sur-
faces are shown in Fig. |. A single sharp vibrational loss peak
1s observed at 20 and 24 meV on the Cu(110) and Ni(110)
surfaces, respectively. Off-specular measurements show these
losses to be excited by the dipole scattering mechanism [14].
Energy gain peaks are also observed with an intensity ratio to
the energy loss peaks determined by the Bose-Einstein distri-
bution factor at 300 K. An important feature of these losses
ts that the ratio of their energies scales as the ratio of the
maximum bulk phonon frequency which is 29.7 and 36.7 meV
for Cu [10} and Ni [11], respectively. This fact suggests that
these losses are derived from longitudinal phonons propagat-
ing normal to the surface.

3. Pseudoband gaps and surface resonances

The notion of a pseudoband gap is illustrated by the disper-
sion of longitudinal bulk phonons in the (110] direction.
A detailed analysis of the displacement fields for phonons
scattered from the surface shows how a surface vibrational
resonance can develop in this situation and why the divergent
van Hove singularities present in the projected bulk phonon
density of states disappear on the surface projection. The
development of a resonance on the (110) surface is contrasted
with the (100) and (111) surfaces where no such resonances

appear within the nearest neighbor central force constant
model.

For the (110) surface of fcc metals only rigid motions of
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Fig. 1. Electron energy loss spectra of the clean (110) surfaces of Cu and Ni.
The specra were recorded in the specular direction at 300 K. The sharp peak
observed at 20 and 24 meV, for Cu and Ni respectively. correspond to surfa
vibrational resonances. !

the layers of atoms normal to the surface can be dipole active.
Such a motion of the bulk layers corresponds to longitudinal
bulk phonons propagating in the [110] direction. It is known
since the early studies by inelastic neutron scattering that the
full bulk phonon dispersions for Cu and Ni can be well
described by a Born-von Karman model of lattice dynamics
based on central nearest neighboring force constants [10, 11}.
In this model the eigenvalue problem for the longitudinal
bulk phonons propagating in the {110] direction is given by

w'w,

2
’H(4WL — Wi — Wi — Wi — W) (1)

and is in the [100] and [!11] directions given by
2x

‘M’(zwL - Wi — W) (2)
where w, is the displacement of an atom in the Lth layer in
a direction normal to the layer, w the frequency. x the central
nearest neighboring force constant, and M the mass of an
atom.

From the translational symmetry of the bulk luyers the
solutions to egs. (1) and (2) are simple plane waves w, = ¢™*
with energies w() sausfying the dispersion rclation for the
(110] direction,

W) = géj[sin’(%) + sin"(n[)]_ &)

-

2
W w,

and for the [100] and [111] directions,
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e Reduced Wave \ector q; = Qzd/7

o Fig. 2 Longitudinal bulk phonon dispersion relations in the [110], [111)and  tional density of states in the surface region. Before present-
:'\; [100] directions of Cu and Ni. The data from inelastic neutron scattenng are  ing results for the surface density of states we will consider
) ‘{'.I cTohmparcd’wvnh resuits from a nearest neighbor central force constant model. first the density of states for a bulk layer. The phonon density
¥ € interlayer distance 15 d. of state g(w) for a bulk layer is simply determined by
. ! ) 1
.Aizl‘ . L ’ﬂ; 2le) = S;i;j' K 3
:‘2 w(3) = wsin ( 7). (4) Thde i
_'0‘::. s T where the sum is over ail positive ¢, satisfving @ = «x({,).
:::q‘ wherg ei = 8w M. The resulting phonon dispersion frqm From the phonon dispersion relations given by egs. (3) and
I this simple force constant model for the lattice dynamics (4) ¢() can be evaluated straightforwardly and is presented
) agrees fairly well with data from inelastic neutron scattering for Ni in Fig. 4 (upper panel). In the low energy limit w =
! for all the major crystallographic directions as shown in ¢z /and g() goes to a constant. g(w) = dic n, where ¢ is
o Fig. 2 when o is adjusted so that w({ = 1) is equal to the longitudinal sound velocity and d the interlayer spacing.
;o’.: the measured value in the [110] direction, i.e., eX{ = 1) = [n one-dimensional problems, as in the case considered here.
;’ iy 0\ 2wy = 29.7 and 36.7meV for Cu and Ni, respectively. the stationary points in the dispersion relation defined by
) The fit 1s parucularly good in the high energy region and the dwd; = 0 give rise to divergent van Hove singularities in
® largest discrepancies are typically found in, for this analysis, g()[15]. The divergences are in most cases power singularities
.:" the less interesting low energy region. with an exponent — 12, This kind of singular behavior is
: o, A charactensuc feature of the dispersion in the [1 10] direc-  readilv shown from the fact that it is possible to make a
o :: ton 15 its non-monotonic behavior with a maximum st Tavlor expansion o) ~ o + +({ — 2)F 2 around an
el s = <m. well within the Brillouin zone. This behavior can be  isolated stationary point { = J_and eq. (5) gives directly that
«‘ understood simply from the coordination of atoms in this I .

On direction shown 1n Fig. 3. In this case an atom has nearest ¢(t9) > = @ ol ooy (6)
B neighbors not only in the nearest layer but also in the next Nl
;:\-; nearest layer. The next nearest neighboring atom lies in the  However. in some excepuional cases. which are not encoun-
¢ (110] direction and causes the next nearest interlayer force tered here. + = 0 and the next leading term in the Tavlor
' constant to be as strong as the nearest interlayer force con-  expansion gives rise to another value for the exponent. For
e stantsn eq. (1). This causes for instance the restoring force for  metals 1t 1 also possible to have non-analytical behavior,

the displacement ficlds at [ = 0.5 10 be stronger than at  Kohn anomalies. from the long-range interactions intro-

Nhe . = L0.In the other two crystallographic directions an atom  duced by the sharp Fermi surface. Those singulanties are not
':',*\:: has only ncarest neighboring atoms in the nearest neighbor-  discermble tor Cu and Ni. The most important point to be
O ing layer and this causes the dispersion to be monotonic with  made here about g(w) is the fact that the {110] dispersion
‘ :: + as evidenced by egs. (2) and (4). relation has a relauvely large density of states 1n a rather

Y In surface vibrational spectroscopy one probes the vibra-  narrow region in . 22 < h < 33meV. compared to the low
.' Phvuca Scripta 36
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Fig. 4 The densuty of states g(w) for longitudinal phonons projected on bulk
and surface layers for Ni. The results for g(w) in the {110}, {111] and {100}
crystal directions have been calculated using the same force constant model
as i Fg |

energy region 0 < A < 22meV. This latter region will for
that reason be called a psuedoband gap. No such region can
be defined for the other two directions [110] and [111].

In order to evaluate g(w) for a surface layer one needs a
model for the effects of the surface on the force constants. An
obvious etfect of forming a surface is the corresponding loss
of coordination of the surface atoms. Here we will only
account for that effect on the interlayer force constant. The
resulting equations describing the surface layers in the [110]
direction are given by.

Wi, = —:—{(ZW, — Wy, — W)
‘ (7)
. b3
oW, = T{(}w; — W, — Wy — wy),

and for the outermost surface layers in the [100], [I11]
direction

A
orw, = i—; (W, — ws). (8)
Note that within this formalism the relaxation of the surface
layers is taken into effect only through modifications of the
surface interlayer force constants.

The presence of the surface breaks the translational sym-
metry and the solutions to eqgs. (1) and (7) can no longer be
written as a single plane wave. Rather a wave e ' incident
on the surface will be reflected and can couple to another
wave ¢ "'"* with the same energy aX{) = «x{). This kind of
argument suggests the following ansatz for the scattered wave

- e W

in the [110] direction,
w, = e 1wl + R(g) emCL + R?(C)cnl.’L. (9)‘

This form for the ansatz is justified in the Appendix. Due
to the non-monotonic behavior of the dispersion some
care is needed to get the right boundary conditions. The
reduced wavevector { has to be chosen from the ranges
-1 € < ={,and0 <€ { < {, wherethe maximum in the
phonon dispersion occurs at + (. In these ranges the group
velocity is positive, dw/d{ > 0, so that e "™ and &'t are
incoming and outgoing waves, respectively. The other reflected
wave e* "'~ is propagating for w/w, > 1/\/2 and similarly
has to be chosen from the ranges where the group velouty s
pasitive, dw/d{ > 0. For smaller energies w/w, < I/VZ . |s
complex and e~ is an evanscent wave and the sign of Im J
has to be chosen so that it is a decaying wave.

The two reflection coefficients R({) and R({) are now
determined from the two equations of motion for the surface
layers, eq. (7). The two equations for R({) and R({) are given
by.

dORE) + dRQ) = —d(-3). i=12 (10)
where
d,({)
and

dy(3)

(V:(;) - l4) <+ é(c”’; + :I:l()

(V) ~ 3/8) + L(e '™ + ™ + e

Here v is the reduced energy v = wiw,. The surface vibra-
tional density of states defined as,

gw) = | dC|w, 5w — w(O] (1)
Jo

can now be evaluated from eq. (9). It turns out, however. that
it is more clegant and practical to evaluate g(w) by the
transfer matrix method described in detail in the Appendix.
The resulting g(w) calculated by the transfer matrix method
for the [110) direction is depicted in Fig. 4 (lower panel).

A noteworthy feature of g(w) is that the divergent van
Hove singularities have disappeared in the projection on the
outermost surface layer. This can be shown rather easily from
egs. (9) and (10) to be due to the fact that one gets destructive
interference between incident and reflected waves resulting in
w, = 0 at the stationary points. For instance at { = |, the
ansatz degenerates to

[+ RC)le ™" + RCp) e ™" )

Instead of having two inhomogeneous equations for £(JYand
R(S) from eq. (10) we have now two homogeneous equations
fort + R((,)and R(). These two equations will in general
have a trivial solution cxcept in those accidental cases where
the determinant is identically zero. Thus the contribution of
glw)from{ = {,isglw) = hw (O /1dwdl). Fromeq. (10) 1t
15 evident that w,({) is analytic around { = (. and w(J) =
A = Sn)since wi(Cn) = 0. Similarly for wfg), w($) > w, +
A = )2 and

204

gw) = Y (w, — 'l (= (13

I’

Thus the divergent van Hove singularity ~(m — o,) '~ at
a bulk layer for the one-dimensional model turns nto -3
bounded van Hove singularity ~(w — w,)' " on a surface
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laver. This argument indicates also that the divergent van
Hove singularity should not exist in g(w) for a projection on
any layer for the semi-infinite substrate. A closer analysis
reveals, however, that the bulk density of states are recovered
in the limit L — co. For instance, for a layer far inside,
L> 1, |w/| = 4dsin*[n({ — {n)L] when{ = {,. Thus g(w)
will rise rapidly when going away from w,, and have a large
maximum 8L/[y| at { — {, = 1/2L, arbitrarily close to w,,.
This argument for the disappearance of the divergent van
Hove singularities in a projection of g(w) on a surface layer
can be shown to apply to more general situations. For
instance, it is not necessary that surface force constants are
the same as in the bulk region.

Most importantly, g(w) shows a sharp narrow feature
around 23 mV as seen in Fig. 4 (lower panel). This feature
is now shown to be a surface vibrational resonance. In a
situation where there is an absolute band gap it is well known
that the surface can introduce a localized state split off from
the band. In the present case there is no absolute band gap
rather a pseudoband gap. The surface can possibly split off a
state from the band which turns into a resonance by over-
lapping with the low density of bulk states in the pseudoband
gap. This expectation is confirmed from an analysis of the
reflection coefficient for w/w, < 1'y2. J = 1| + ik where
cosh nx = }[1 + 25 — 32(w/w,)’] and the complex part
gives rise to an evanescent wave (— 1)t e **. The correspond-
ing reflection coefficient R() is found to have a simple poie
for complex v at v, = 0.663 + 10.047 (for Ni, Aw,,
(24.3 + 11.73) meV). The existence of such a pole with an
imaginary part w, relatively close to the real axis justifies
calling this rather sharp peak a surface vibrational resonance.
Note that the peak is quite asymmetrical due to interference
with bulk states in the depicted projection, a feature which is
typical for Fano-resonances [16).

For the [100] and [111] directions the ansatz for the
solution to eqs. (2) and (8) has a more simple form

we = et 4 R e (14)

for 0 < { < 1. This ansatz inserted into eq. (8) for the
surface layer gives a simple form for the reflection coefficient
R(() = ¢™. As a function of v this reflection coefficient,
R =1 — 2% + 2iy/v’ — v' (when 0 < { < 1), has no
poles associated with any resonances. The phonon density of
states g(w) projected on a surface layer can now be evaluated
directly from eq. (11) and is given by

4 ——
glw) = 7‘.{\/[ — (wye). (15

This density of states shows accordingly no surface vibrational
resonances as depicted in the lower panel of Fig. 4.

4. Comparison with experiment

An attractive feature of EELS is the possibility to analyze
quantitatively the measured dipole active losses (17]. The
dipole loss function for longitudinal bulk phonons is calcu-
lated for N1 and compared with the measured spectrum. The
sensitivity of the calculated spectra to changes in the surface
force constant and the distribution of the dipole activity
among the surface layers are also investigated.

In a recent letter it was shown both experimentally and
theoretically that the displacements of the outer layers of
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metal atoms can give rise to a long range dipole field due to
incomplete screening by the conduction electrons of the elec-
tric field from the displaced ion cores [5]. The strength of the
dipole field is described by effective charges ef which relate
the normal component of the dynamic dipole moment 4. to
the rigid displacements w, of layer L normal to the surface
through,

e = 3 elw,. (16)
L

Here we use the same model for ef as in Ref. [5],
et = —ef =¢* and e =0. L > 2. (17
Note that a rigid displacement of the metal atoms normal to
the surface cannot give nse to a dipole moment, ie..
X, ¢ = 0. The projection of the phonon density of states
relevant for dipole losses is accordingly given by

sw) = [, &[T @] oo - ) (18)
L

where nf = e?/e? , with e®, = (I, ¢**)'*, is the normalized
field of effective charges. The spectral function S(w) for the
dipole-dipole correlation function appearing in the energy
loss function is related to g(w) through (18],

S = [l + n(w)] e} ﬁg(fu). (19)
where the mass M of a metal atom appears in the root-mean-
square amplitude #/2Mw for phonons with energy Aw and
n(w) is the Bose-Einstein distribution factor.

From the inelastic dipole scattering theory the inelastic
current /,(w) of electrons collected in the detector around the
specular direction after experiencing an energy loss hw is
given with sufficient accuracy by [17]

1oyl rme ~ f(En, . 3)S(w) (20)

W' AE, cos
where [, is the total integrated intensity of the elastic peak in
the energy loss spectrum. m the electron mass, 4 the area of
the surface primitive cell, and £, the kinetic energy of the
electron incident with an angle x from the surface normal.
The function f(E,, w. 2) ts given by [17]

f(Ey.w, 2) = (sinx — 2cos’n)Y
+ (sin’z + 2 cos’x) In X. 21

where Y = 010 + M), X = (05 + 05),05. 0, = hw2E,
gives the angular extension of the dipole lobe, and ¢, the
half-angle of the detector aperture. The loss function depicted
in Fig. S is now obtained from eq. (20) by calculating the
projected phonon density of states defined in eq. (18) by the
transfer matrix method for the disinbution of effectve
charges given in eq. (17). The parameters 2, 8,, and E, are
determined from the experimental condittons described in
Section 2, and the experimental resolution was introduced by
a 4meV Gaussian broadening of g(w). The total effective
charge ¢*, had to be chosen to be 0.034e and 0.039¢ tfor Cu
and Ni, respectively, in order to reproduce the measured loss
intensities at 300 K. These values are of the same order of
magnitude as for the value determined previously for the
Cu(100) surface [5]. Because the resonance gives rise to 4
rather sharp loss peak there has been no particular need
to have a detailed analysis of the contribution from the
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Fig. 5. Calculated electron energy loss function /,(w)/l, for Ni(110) at
300K. /, is the maximum intensity of the elastic peak in the energy loss
spectrum. Only the two outermost surface layers are assumed 1o be dipole
active and the total effective charge e, has been adjusted to 0.039¢ (e is the
free electron charge) in order to reproduce the measured loss in Fig. 1. The
instrumental resolution has been introduced by a Gaussian broadening of
4meV.

electron-hole pair excitations to subtract the background
[19].

The calculated position of 24.5 meV and the peak width of
6meV for the surface vibrational resonance are in good
agreement with the measured values for Ni. Note that the
value for this peak position is about 1 meV higher than for the
peak position deduced from g(w) for the projection on the
outermost layer. This difference is due to the fact that the low
energy bulk phonons contribute much less to this dipole
active projection, which suppresses the asymmetry of the
peak. The peak position is thus closer to the value for the real
part of the pole in the complex w-plane as given in the
previous section. For Cu, g(w) is obtained in the advocated
force constant model simply by scaling the phonon energies
with  w,(Cu)/w,(Ni) =~ 0.81. This gives an energy of
19.8meV. in good agreement with the measured value of
20 meV observed in Fig. 1.

There are no reasons to expect that the only effect of the
surface is the loss of coordination of atoms in the surface
region as described by eq. (17). For instance, both model
calculations for the total energy (20) and LEED measure-
ments (8] have shawn that the atoms relax oscillatorily in the
surface region for many metals. In these new equilibrium
positions for the atoms the force constants can be different
from the bulk values. Off-specular measurements of the
Rayleigh surface phonon dispersion on Ni(100) by EELS
have suggested that the interlayer force constant between the
first and second layer is about 20% larger than the bulk value
{1. 2]. On Ag(111) the observation by inelastic He scattering
of a surface vibrational resonance away from the ['-point in
the SBZ could be accounted for by a reduction of about 50%

of the radial part of the force constant between atoms in the
surface region (3, 4].

The position of the surface vibrational resonance in the
observed energy loss spectrum should also contain infor-
mation about the surface force constants. The sensitivity of
the position of the resonance 5 changes in the surface inter-
layer force constants has been investigated by calculating a
dipole active projection of the phonon density of states g(w)
for different values of the surface interlayer force constants
for Ni. The resonance is predominantly localized in the two
outermost surface layers and should accordingly be most
sensitive to changes of the interlayer force constants within
these layers. The corresponding modification of the interlayer
force constants is described by the following equation of
motion for the surface layers,

;Ww2w| = a(w, — wy) + 2(w, — wy)
Ma'w, = a,(wy — w)) + 22w, — wy — w,) (22)
Mo'w, = a(wy — w) + a3wy — wy — w, — wy)

The resulting position and width of the resonance are tabu-
lated in Table I for a considerable range of values for R, =
7/2 and R, = a,/a. No attempt has been made to relate
these parameters to the observed osciilatory relaxations of
this surface since that would require a detailed microscopic
model for the interaction potential. It would be possible to
proceed with the simple pair potential, but the results
obtained would be highly doubtful for a transition metal due
to the different characters of the contributions to the interac-
tion energy from the free electron like s-electrons and the
tightly bound d-electrons. That the position of the resonance
is much more dependent on R, than R, is no surprise since the
displacement field of the resonance has its dominant weight
on the relative displacement of the two outermost surface

Table I. The influence of the surface interlayer force constants
on the resonance position and width. The surface interlaver
force constants R, = x,/2 and R, = x./x are normalized 10
the bulk interlayer force constant a. The resonance position w,,,
und the width T, are narmalized to the position o,
(=24.5meV for Ni) and width T, (=3.1meV for Ni, esti-
mated full width at half maximum) corresponding to the situa-
tion 2, = %, = a. The area enclosed by the solid line is the
range of values in accordance with the observed resonance
position when the error bars are taken into account. The dashed
entries for the resonance widths indicate that the resonance is
no longer well defined
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lavers. The experimental resolution is such that it can deter-
mine the peak position within 1 meV. The corresponding
range for the position of the observed resonance relative to
the calculated position is then 0.94 to 1.02 and is enclosed by
4 solid line in Table I. A large range of values for R, is
acceptable but not for R,. The Table suggests that R, lies
between 0.8 and 1.1. There are also notable changes in the
width of the resonance when R, and R, are changed. For large
values of R, the resonance emerges into the region of large
bulk phonon density of states and the width is no longer well
defined. With the present resolution of electron energy loss
spectrometers it is not meaningful to extract any information
about these parameters from the observed resonance width.

Another consideration to be taken into account is how the
etfective charges are distributed among the surface layers. In
the case of the Cu(100) surface the results from a jellium
model calculation for Cu suggested the distribution defined
in ¢g. (17) [3]). The application of the same model for the
Cu(110) surtace gives, however, that even the third and
fourth layers have an appreciable etfective charge ¢! mainly
due to a smaller interlayer distance in this direction. In Fig. 6
{lower panel) we present results for g(w) calculated for Ni
with two different distributions for nf = ef‘e? extending to
the third and fourth layers and compare with the result from
the distribution detined in eq. (17). For the other two distn-
butions the resonance peak is still prominent and does not
change 1is position, but the strength of the states in the
upper bulk band region has been appreciably enhanced. The
measured loss spectra for Cu and Ni do not indicate such a
strong contnbution from the bulk states.

Thus our analysis of the loss spectra suggests that there are
no dramatic changes in the surface interlayer force constants
from the bulk values.

5. Dispersion of the resonance along the [~ direction

The dispersion of surface vibrational modes along different
directions tn the SBZ has been shown to be feasible to
measure for a few metal surfaces by inelastic He scattering [3]
and off-specular EELS [1]. Therefore it is of interest to know
how the resonance disperses away from the [-point. It is
tound that the resonance exists and is derived from a pseudo-

0.3 ‘, Effective Charges JJ
| - (1,-1,00)/v2
[ e (-1a,-1)/2
0.2 | I (,-1,-1,1)/2 ]
!
1

o1 |

Projected Density of States g(w) (mev™")

0.0 + + 4 N
0 10 20 30
Phonon Energy Fw (meV)
Fig A Sensitnaty of gl to different models tor the effective charge tields

Results for ditferent choices of the effective charges (€*. e?. e?. ed) of the four
outermost surtace layers are shown, e, = | when 2, = 2, = x.
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band gap even out to the X-point. The resonance makes an
avoided crossing with another resonance derived from a
surface phonon in a bulk band gap. Close to the X-point the
resonance leaves the bulk subbands and appears as a surface
phonon.

Along the [-X direction the displacements of the atoms
partition into two classes due to the reflection plane sym-
metry. The odd modes are polarized in the y-direction and are
symmetry forbidden to couple with displacements of atoms
polarized in the x-- plane which form the even class. [n the
nearest neighboring central force constant modcl the motion
of atoms in the y-direction gives rise to a monotonic dis-
persion of the corresponding phonons with no pseudoband
gaps. Henceforth the y-motion will not be considered further.
The equations of motion for displacements of atoms in the
x-direction and in the z-direction are coupled along the [~ ¥
direction and are for the bulk layers given by

X 1
wu = T{{M — 2cos (ml))u;, — cos{ms Dy, | + u;.,)
+ isin (r&/2)(w,., — w, 1))

(23)
ww, = %-{ [dw, — cos (RE/2)(wy o) + w, )
—(w, s+ w, o)+ tsin(nd 2y ., — u )]

k. R k R . .
where u, ¢°'"* and w, € " are displacements in the x-

and :-directions, respectively. of an atom at position R in
Layer L,and { = k‘a/v"?._n is the reduced wavevector along
the I'~ X direction. At the point ["-point (¢ = 0) the equations
of motion for u, and w, are decoupled and eq. (1) is recovered
for w, .

The solutions to eq. (23) are plane waves u, = w(J. ) e
and w, = w(é. ) e™* which would result in two branches of
the dispersion relation, one lower o, = m (&, J) and one
upper w, = m,(<¢, ¢). The behavior of these two branches at
S = 0.6.is illustrated in Fig. 7. If one artificially removes the
coupling between u, and w, then the dispersion for phonons
polarized in the x-direction 1s monotonic and crosses twice
the dispersion tor phonons polarized in the z-direction. The
latter dispersion is non-monotonic due to the strong coupling
1o the second nearest neighboring layer. The coupling present
in eq. (23) between u, and w, causes these two branches to
make two avoided crossings with corresponding interchange
of character and makes them both non-monotonic with [

The influence of the surface on the force constants is
modeled in the same way as in Section 3 by taking into
account only the loss of coordination of atoms in the surtace
region. In this complex case we will not attempt to wrnite
out the form of the scattered wave for an incident wave. It
1s much more tractable 10 generate results for the surface
vibrational density of states by using the transter matnix
method. This method cannot be applied directly to this system.
however, due to the fact that the dynamical submatnix D
hetween the principal layers is singular (see Appendix). This
matrix D, can be regulanzed, however, by introducing o
small second laver coupling (x. M)rte. . + u, ;) mto the
equations of motion for u, ineq. (23 The valuesof'r = 0t
15 found to be sufficiently small for an accurate calculation ol
the phonon density of states. This value for r is much smaller
than the errors in the nearest neighbonng force constant
model used to describe Cu and Ni.
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Fig 7 Dispersion of bulk phonons in the [110] direction of Ni and the
corresponding surface phonon density ol states gl at I = k vor o= 06
The left panel shows the two branches. an upper U™ and a lower "L~ 0 L L . L

branch. of the dispersion 1n the (1 10] direction (sohid lines) ansing from an
avorded crossing between phonons polarized in the - and -directions,
respectively. The dashed lines show the dispersion when the interaction
between these two polanzations s turned off The nght panel shows the
phonon density of states gl projected on the --motion (solid hine) and the
v-motion (dashed line) of the outermost surface layer.

The results in Fig. 7 for the phonon density of states
glea, J)atZ = 0.6 projected on the x-motion and the =-motion
of the outermost layer show several prominent features,
There is a localized state in the gap at 11.1 meV. the surface
phonon S, in the notation of Ref. [21], being split off from the
bulk subbands by the reduction of the restoring forces in the
surface region. The x-projection of g(w. ) shows a narrow
peak at 24 meV just below the minimum energy of the upper
branch which can be interpreted as a state being split off from
the upper branch and turning into a resonance due to overlap
with states in the lower branch. Thus the ongin of this
resonance 1s the same as for the resonance discussed in the
work on Ag(111) where an ““anomalous™ peak was observed
i inefastic He scattering (3]. There is. however. another
narrow peak in the z-projection of g(w. &) around 19 meV.
The non-monotonic behavior of the lower branch suggests
the interpretation that this peak is a resonance derived from
the corresponding pseudoband gap of the lower branch
below m (£, = 1). The upper branch shows similar non-
monotonic behuvior with a pseudoband gap in between o, o
and ,($, § = 1) which results in a resonance at 31.1 meV.,
very close to @, (&, = I). However, its dominant ampli-
tudes are on layers further inside the surface.

By calculating the x- and z-projections of g(w. ) on the
outermost layer tor several values of & between 0 and 1 the
behavior of the surface vibrational modes can be tollowed
along the I X dircction as shown in Fig. 8 At the ¥-point we
have three surfuce phonons for displacements polarized in the
v = plane (i) S, the Rayleigh surface phonon (1) S, which
cxists only close to X and tiii) S- a gap mode. The labeiling of
the modes are taken trom Ref, [ except tor S, which was not
identified tn their slab calculations. The mode S., is localized on
the second and third layer and 15 predominantly polanized in
the --direction. This mode turns mto a resonance MS, inside
the lower bulk subband and hies in the pscudoband gap just
below (5. ¢ = 1). At around & = 0.5 0.6 the resonance

0.0 0.2 0.4 0.6 0.8 1.0
I Reduced Wave Vector t=kea/V2Zr X

Fig 8. Dispersion of the resonance along the [ ¥-direction. The dispersion
of the resonance ansing from the pseudoband gap (squares) makes an
avorded crossing with the dispersion of the resonance (circles) derived from
the S.(.X) surface phonon. The solid lines aive the maximum hw, ., ho
and minimum A, .. hw, .. energies of the lower and the upper boundaries
of bulk subbunds. respectively. The dashed lines show hw (3,5 = 1) and
fua, (5.0 = 1) for phonons with a dashed wavevector s =k 3n where u
15 the lattice constant. The notation of the surface phonons S, and S. ure
taken from Rel. [21).

interacts with the MS, resonance and makes an avoided
crossing with a corresponding interchange of character. The
resonance MS. is a continuation of the gap mode S- into
the bulk subbands and becomes mainly polarized in the x-
direction tor 0.6 < & < 1.0. When ¢ approaches the ["-point
(S = 0y MS. goes over into the resonance discussed in the
previous sections and is mainly polarized in the ~-direction.
From the I'-point to the avoided crossing the width of MS.
remains roughly the same (about 3.5 meV) and after it inter-
changes character it sharpens appreciable to a width less than
0.5meV. MS, broadens and gets more localized on the outer-
most layer away from the [-point and just at the crossing the
width s about 2meV. After the crossing the width remains
about the same and sharpens up only Just before leaving
the bulk subband. Thus at the crossing the widths ol the
resonances overlap, which makes the avoided crossing less
well detined.

6. Summary

\ new hind of surtuce vibrational resonance s shown trom
surface lathice dynamies to exist on surtaces having a pseudo-
hand ¢ap in the bulk phonon denaity of states. The surface
sphits off 4 mode from a region of high density of states into
4 pseudoband gap region where the density of states 1s largely
depieted. This behavior s illustrated for phonons having 4
surtace component of the wavevector along the X direction
in the SBZ ot the (110) surfaces of Cu and Ni. Recent
measurements and analysis of the Fe bee (111 surface have
shown this type of resonance 1o be a gencral effect {7} In these
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cases, the pseudoband gap 1s a geometric structure etfect
caused by the parucular coordination cf the atoms, which
leads to higher Fourier components in the non-monotonic
bulk phonon dispersion relations.

At the ['-point the resonance is dipole active and has been
observed by EELS on the (110) surface of Cu and Ni and the
(111) surface of Fe [7]. From these observations it has been
possible to obtain some information on the surface interlayer
force constants. In particular, the positions of the loss peak
can only be reproduced for Ni when the outermost surface
interlayer force constant lies within — 20% to 10% of the
bulk value. Along the [".¥ direction in the SBZ of Cu and Ni
the resonance makes an avoided crosstng with a resonance
derived from the S-(.¥) surface phonon. This novel behavior
should be possible to observe by inelastic electron or He
scattering at large parallel wavevector transfers.

Finally. this analysis suggests in general that this type of
surface vibrational resonance should be observable not only
by inelastic electron dipole scattering but by other surface
spectroscopies, such as inelastic He scattering, on a variety of
surfaces at points in the SBZ where a bulk phonon dispersion
1s non-monotonic and consequently has a pseudoband gap.
The origin of these effects is directly related to the geometric
siructure of the surface.
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Appendix

In this Appendix it 1s shown how the transfer matrix method
proposed by Lee and Joannopoulos {12} cant : applied to the
calculation of surface vibrational density of states. The
method is illustrated for the surface lattice dynamics problem
of longitudinal phonons propagating normal to a fec (110)
surface. Furthermore, this method justifies the choice of the
ansatz for the scattered waves in eqgs. (9) and (14).

The first step in this method is to form principal layers.
here labelled by anintegern.n = 1,2,. . ., from the layers
of atoms parallel to the surface such that the dynamical
matrix only introduces interactions between displacement
tields 1n nearest neighboring principal layers. In the present
case two lavers form a principal layer. The column vector I,
denotes displacement fields tn the principal layer n,

W) = wo., oo =12 (Al

In terms of these column vectors W, the eigenvalue problem
for the bulk layers can be wnitten as,

(z=DW, -D W, , ~D,W,, =0, n=12 .
(A2)

and the corresponding equation for the surface layers is given

by,

(2 = D W, - D, W, = 0. (Ad)

Here - = o and D,,. D, and D, are (2 < 2) dynami-
cal submatrices formed from the full dynamical matrix
D(L. L) which can be obtained directly from egs. (1) and
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(7). Dult.)) = DL + i = 2. 2L + 5= 2), D,li.j) =
DL + i — 2, 2L + j). L denotes a bulk layer, and
Dwli. j) = D(i. j). For instance, D,, is given by,

o, = 2(° A4
”I—A”l]. ()

Equation (A2) shows explicitly that there are only interac-
tions between displacement fields in nearest neighboring prin-
cipal layers. Since D' exists W, can be directly expressed
in terms of the two preceding column vectors W, and W, |, by
a simple rearrangement of eq. (A2) as.

W, = Dml(: = Do) W, ~ Dm]Drﬂ W, .. n=213 .

{AS)
This equation shows that it is possible to construct a matrix
T(z) which relates the displacement fields in two principal
layersn + 2andn + 1tothe corresponding fields in the two
preceding principal layers n and n — 1.

W, W,
( = T(:)( ) . (A6)
W LAY

The matrix T(:) is the transfer matrix and is given by the
product of the following two matrices.

’Drn‘(: — D) ‘D6||Dv;|\
T(z) = ( )
. 1 0
. ( D,'(z — Dy) —Dy,' Dy, ) A7)
1 0

By iterating eq. (A6), a displacement field in any principal
layer can be determined from their values on the surface
layers as,

W..o W
) - T"(:)( ) (A8)
W..., W

Equation (A3) for W, and IV, gives only 2 equations for 4
displacement fields and are not sufficient to determine M. and
W,. Further restrictions are found by introducing the appro-
pnate boundary conditions. That can be done by analyzing
the eigenvalues and eigenvectors of the dynamical matrix.

For the bulk layers the solution of eq. (A2) is given by
translational symmetry as plane waves,

/eulmr:
W, = ( . (A9)

Hin  Lymg
e ~

where the reduced wavevector ; satisfies the bulk dispersion
relation w’™ = wi[sin’(r{'2) + sin*(nd)] 2 as given by eq. ()
in Section 3. In terms of the variable 4 = ¢'™ this dispersion
relation 1s equivalent to a polynomial of degree 4 in 2 and has
accordingly 4 roots 4,. & = 1,2, 3. 4. The cigenvectors 1, (2)
of T(z) can now be directly formed from this plane wave
solutions,

) = (A1)

ow ———w-vw
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T()V, = iiV,. The eigenvalues are distinct away from the
critical points, dw/d{ = 0, and the corresponding eigen-
vectors span the 4-dimensional space of displacement fields of
two adjacent principal layers. Thus W; and W, can then be
simultaneously expanded in terms of ¥,

w, 4
f =

This equation and eq. (A8) give directly that the displacement
field for any principal layer can be expressed as,

m.n~1 3
W = Y AV, n=012 ..., (A12)
M4 k=1

or in terms of the displacement field w, for a layer L,

4
we o= 3 & e, (A13)
k=]
where &, = ¢, ¢ . This form of solution in eq. (A13)
justifies the ansatz made in eqs. (9) and (14) in Section 3. The
solution corresponding to scatiered wave can be found by
imposing the outgoing boundary conditions as discussed in
Section 3. This restricts the solutions to depend on two
parameters. These two parameters can then be determined
from the two equations for the surface layers.

A more convenient way to evaluate the vibrational density
of states g(w, {n,}) than using the scattered wave solutions
appearing in eq. (A13) is to determine first the resolvent
matrix (a Green’s function) U(L. L': z) associated with the
dynamical matrix D(L, L’). This resolvent is defined by,

S [8(L. L) — DL, LU(L", Ly 2) = (L, L), (Al4)
s
and the vibrational density of states is given by,

5
glw, {n ;) = - % im Y n UL, L:(w + i0%))n.

LU

(Al5)

The transfer matrix approach can now be applied by con-
sidering the resolvent (2 x 2) submatrices U,, () with
respect to the principal layers and they are defined as,

U,(.j.2y = U2n— L +i,2n" + L — j;2),
iLj=12 (A16)

To obtain the vibrational density of states for the surface
layers it is sufficient to evaluate U, ,(z). The resolvent matrix
element U, () satisfies the same equations as W,, eq. (A2),
except at the surface layers where the equations have an
inhomogeneous term,

(z — Dop)U,,(2) — Dy Uy (5) = 1 (A1T7)

Similar to the construction of W,, U,,(z) can be constructed
from U, (z) and U,,(z) by iterating the transfer matrix,

b’:ﬂ“ (:) UZ. (:)
( - ) = T”(:)( | ) (A18)
\U:noll‘:) U|'|(:)
Some care is needed to get the correct physical Riemann sheet
of the resolvent as a function of z. On this sheet U, ,(z) has to
be decaying with n when imparting a small positive imaginary

part ie t0 w, z = (w + ie)’. Such a decay is evidently
achieved by expanding the two column vectors of U, ,(z) and

‘:,’v‘{f'ﬂw‘.s'.!ﬁ‘*;.'.’-"f-"" L ﬂﬂf"'f*.-’i; :'-;‘;t’o’ %
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U, ,(z) simultancously in terms of those eigenvectors with

|isl < 1. This point and the fact that for complex : the
eigenvectors are divided evenly into two classes [4,| < | and §
[A.| > 1, respectively, were shown in detail for the general
case in the original work by Lee and Joannopoulos [12]. Let
k = 1, 2 label the two eigenvectors with |4,| < 1 and intro-
duce the two associated (2 x 2) matrices,

Wiy < v
i J) /(i) A19)
A) Vi + 2). f

The expansion of the two submatrices of the resolvent in
these two eigenvectors now becomes,

(U:..(~)> _ (Wuﬁ) (A20)
U () W 4

where the coefficients in the expansion forms a (2 x 2)
matrix 4. These two resolvents are now specified by 4
parameters. The 4 surface layer equations in eq. (A17) for
U,,(z) and U,,(z) will now completely determine these

parameters. This can be done by first eliminating the matrix
A from eq. (A20).

U () = ‘VULVL‘IUIJ(:)' (A21)

Furthermore, by inserting this expression for U,,(z) into
eq. (A17) a simple linear matrix equation is obtained for
U, ,(z) which can be solved by a matrix inversion,

Uo(z2) = (z — Doy — Doy W W)™ (A22)

Thus for every frequency w the vibrational density of states
can be evaluated from eqs. (A15) and (A22) by diagonaliz-
ation of a (4 x 4) complex matrix and by inversion of two
(2 x 2) matrices. U,,(z) will have simple poles at those
frequencies corresponding to localized vibrational modes at
the surface. Similarly, the resonances appear as poles in the
complex frequency plane but not on the physical Riemann
sheet of U, , (). However, the other Riemann sheets of U, ,(z)
should be possible to construct from other choices for the
eigenvectors in eq. (A19).
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